

Spa Pro Spa Balance 2

POPS Group (The POPS Group Pty Ltd as Trustee for The Pool Shops Trust)

Chemwatch: **11-32175** Version No: **5.1**

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **24/03/2023** Print Date: **24/03/2023** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	a Pro Spa Balance 2	
Chemical Name	Not Applicable	
Synonyms	t Available	
Proper shipping name	OXIDISING SOLID, CORROSIVE, N.O.S. (contains 1-bromo-3-chloro-5,5-dimethylhydantoin)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Spa disinfectant.

Use according to manufacturer's directions.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	OPS Group (The POPS Group Pty Ltd as Trustee for The Pool Shops Trust)	
Address	2 Cairns Street Loganholme QLD 4129 Australia	
Telephone	7 3209 7884	
Fax	61 7 3209 8635	
Website	http://www.poolpro.com.au/	
Email	office@poolpro.com.au	

Emergency telephone number

Association / Organisation	IXOM	
Emergency telephone numbers	+61 3 9663 2130 (International) (24 hours)	
Other emergency telephone numbers	+61 1800 033 111	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S5	
	Oxidizing Solids Category 2, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Carcinogenicity Category 2, Hazardous to the Aquatic Environment Acute Hazard Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H272	May intensify fire; oxidiser.	
H302	Harmful if swallowed.	

Chemwatch: 11-32175 Version No: 5.1

Page 2 of 16

Spa Pro Spa Balance 2

Issue Date: 24/03/2023 Print Date: 24/03/2023

H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.
H401	Toxic to aquatic life.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	tain special instructions before use.	
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P260	Do not breathe dust/fume.	
P264	Wash all exposed external body areas thoroughly after handling.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	
P220	Keep away from clothing and other combustible materials.	
P270	Do not eat, drink or smoke when using this product.	
P273	Avoid release to the environment.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

<u> </u>	
F SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
F ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
F exposed or concerned: Get medical advice/ attention.	
mediately call a POISON CENTER/doctor/physician/first aider.	
n case of fire: Use water jets to extinguish.	
IF ON SKIN: Wash with plenty of water.	
Wash contaminated clothing before reuse.	
If skin irritation or rash occurs: Get medical advice/attention.	
Take off contaminated clothing and wash it before reuse.	
P301+P312 IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.	
40 IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
144-55-8	>60	sodium bicarbonate
16079-88-2	10-30	1-bromo-3-chloro-5,5-dimethylhydantoin
10043-01-3	5-15	aluminium sulfate
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

D

Description of first aid measures	
Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.

 Chemwatch: 11-32175
 Page 3 of 16
 Issue Date: 24/03/2023

 Version No: 5.1
 Spa Pro Spa Balance 2
 Print Date: 24/03/2023

If fumes or combustion products are inhaled remove from contaminated area. Lav patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Inhalation Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Ingestion Observe the patient carefully. ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ► Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically

Excellent warning properties force rapid escape of personnel from chlorine vapour thus most inhalations are mild to moderate. If escape is not possible, exposure to high concentrations for a very short time can result in dyspnea, haemophysis and cyanosis with later complications being tracheobroncho-pneumonitis and pulmonary oedema. Oxygen, intermittent positive pressure breathing apparatus and aerosolysed bronchodilators are of therapeutic value where chlorine inhalation has been light to moderate. Severe inhalation should result in hospitalisation and treatment for a respiratory emergency.

Any chlorine inhalation in an individual with compromised pulmonary function (COPD) should be regarded as a severe inhalation and a respiratory emergency. [CCINFO, Dow 1988] Effects from exposure to chlorine gas include pulmonary oedema which may be delayed. Observation in hospital for 48 hours is recommended

Diagnosed asthmatics and those people suffering from certain types of chronic bronchitis should receive medical approval before being employed in occupations involving chlorine

If burn is present, treat as any thermal burn, after decontamination.

For acute or short term repeated exposures to strong acids:

- ▶ Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- ▶ Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- ▶ Charcoal has no place in acid management.
- ▶ Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. **DO NOT** use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

FOR SMALL FIRE:

- USE FLOODING QUANTITIES OF WATER.
- DO NOT use dry chemical, CO2, foam or halogenated-type extinguishers.

FOR LARGE FIRE

Flood fire area with water from a protected position

Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

- Avoid storage with reducing agents.
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water courses.
- Fight fire from a safe distance, with adequate cover.
- Extinguishers should be used only by trained personnel.
 - ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - If fire gets out of control withdraw personnel and warn against entry.
 - Equipment should be thoroughly decontaminated after use.

Chemwatch: 11-32175 Issue Date: 24/03/2023 Page 4 of 16 Version No: 5.1 Print Date: 24/03/2023

Spa Pro Spa Balance 2

Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. Heating may cause expansion or decomposition leading to violent rupture of containers. May emit acrid smoke and corrosive fumes. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) hydrogen chloride phosgene other pyrolysis products typical of burning organic material.
HAZCHEM	1W

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Mothada and material for containment and cleaning up

Methods and material for cont	ainment and cleaning up
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. No smoking, naked lights, ignition sources. Avoid all contact with any organic matter including fuel, solvents, sawdust, paper or cloth and other incompatible materials, as ignition may result. Avoid breathing dust or vapours and all contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with dry sand, earth, inert material or vermiculite. DO NOT use sawdust as fire may result. Scoop up solid residues and seal in labelled drums for disposal. Neutralise/decontaminate area.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water courses. No smoking, flames or ignition sources. Increase ventilation. Contain spill with sand, earth or other clean, inert materials. NEVER USE organic absorbents such as sawdust, paper or cloth. Use spark-free and explosion-proof equipment. Collect any recoverable product into labelled containers for possible recycling. Avoid contamination with organic matter to prevent subsequent fire and explosion. DO NOT mix fresh with recovered material. Collect residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. Decontaminate equipment and launder all protective clothing before storage and re-use.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

For oxidisers, including peroxides,

- · Avoid personal contact and inhalation of dust, mist or vapours.
- · Provide adequate ventilation.
- · Always wear protective equipment and wash off any spillage from clothing.

▶ If contamination of drains or waterways occurs advise emergency services.

- · Keep material away from light, heat, flammables or combustibles.
- · Keep cool, dry and away from incompatible materials.
- · Avoid physical damage to containers.
- DO NOT repack or return unused portions to original containers. Withdraw only sufficient amounts for immediate use.
- · Use only minimum quantity required.
- · Avoid using solutions of peroxides in volatile solvents. Solvent evaporation should be controlled to avoid dangerous concentration of the peroxide.
- Do NOT allow oxidisers to contact iron or compounds of iron, cobalt, or copper, metal oxide salts, acids or bases.
- Safe handling · Do NOT use metal spatulas to handle oxidisers
 - · Do NOT use glass containers with screw cap lids or glass stoppers.
 - · Store peroxides at the lowest possible temperature, consistent with their solubility and freezing point.
 - · CAUTION: Do NOT store liquids or solutions of peroxides at a temperature below that at which the oxidiser freezes or precipitates. Peroxides, in particular, in this form are extremely shock and heat-sensitive. Refrigerated storage of peroxides must ONLY be in explosion-proof units.
 - The hazards and consequences of fires and explosions during synthesis and use of oxidisers is widely recognised; spontaneous or induced decomposition may culminate in a variety of ways, ranging from moderate gassing to spontaneous ignition or explosion. The heat released from spontaneous decomposition of an energy-rich compound causes a rise in the surrounding temperature; the temperature will rise until thermal balance is established or until the material heats to decomposition,
 - · The most effective means for minimising the consequences of an accident is to limit quantities to a practical minimum. Even gram-scale explosions can be serious. Once ignited the burning of peroxides cannot be controlled and the area should be evacuated.
 - Unless there is compelling reason to do otherwise, peroxide concentration should be limited to 10% (or less with vigorous reactants). Peroxide

Chemwatch: 11-32175 Page 5 of 16 Issue Date: 24/03/2023

Version No: 5.1 Print Date: 24/03/2023

Spa Pro Spa Balance 2

concentration is rarely as high as 1% in the reaction mixture of polymerisation or other free-radical reactions,

- · Oxidisers should be added slowly and cautiously to the reaction medium. This should be completed prior to heating and with good agitation.
- · Addition oxidisers to the hot monomer is extremely dangerous. A violent reaction (e.g., fire or explosion) can result from inadvertent mixing of promoters (frequently used with peroxides in polymerisation systems) with full-strength oxidisers
- · Organic peroxides are very sensitive to contamination (especially heavy-metal compounds, metal oxide salts, alkaline materials including amines, strong acids, and many varieties of dust and dirt). This can initiate rapid, uncontrolled decomposition of peroxides and possible generation of intense heat, fire or explosion The consequences of accidental contamination from returning withdrawn material to the storage container can be disastrous.
- · When handling NEVER smoke, eat or drink.
- · Always wash hands with soap and water after handling.
- · Use only good occupational work practice.
- · Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some
 other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- ▶ Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
- Store in original containers.
- ▶ Keep containers securely sealed as supplied.
- Store in a cool, well ventilated area.
- Keep dry.
- Store under cover and away from sunlight.
- ▶ Store away from flammable or combustible materials, debris and waste. Contact may cause fire or violent reaction.
- Store away from incompatible materials and foodstuff containers.
- ► DO NOT stack on wooden floors or pallets
 - Protect containers from physical damage.
 Check regularly for leaks.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, Goods of Class 5.1, packing group II should be:

- stored in piles so that
- the height of the pile does not exceed 1 metre
- the maximum quantity in a pile or building does not exceed 1000 tonnes unless the area is provided with automatic fire extinguishers
- the maximum height of a pile does not exceed 3 metres where the room is provided with automatic fire extinguishers or 2 meters if not.
- the minimum distance between piles is not less than 2 metres where the room is provided with automatic fire extinguishers or 3 meters if not.
- the minimum distance to walls is not less than 1 metre.

Conditions for safe storage, including any incompatibilities

1.25kg, 10kg.

- Glass container is suitable for laboratory quantities
- ▶ DO NOT repack. Use containers supplied by manufacturer only.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids:

Suitable container

Storage incompatibility

Other information

Removable head packaging andcans with friction closures may be used.

Contact with acids produces toxic fumes

Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *.

In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.

* unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

unless the outer packaging is a close fitting modiced plastic box and the substances are not incompa

- In presence of moisture, the material is corrosive to aluminium, zinc and tin producing highly flammable hydrogen gas.
- ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.

Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous

Segregate from alcohol, water.

- Avoid strong bases
- Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.
- Avoid storage with reducing agents.

SECTION 8 Exposure controls / personal protection

Control parameters

Chemwatch: **11-32175**Version No: **5.1**

Page 6 of 16

Spa Pro Spa Balance 2

Issue Date: **24/03/2023**Print Date: **24/03/2023**

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	aluminium sulfate	Aluminium, soluble salts (as Al)	2 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
sodium bicarbonate	13 mg/m3	140 mg/m3	840 mg/m3
1-bromo-3-chloro- 5,5-dimethylhydantoin	4.2 mg/m3	46 mg/m3	280 mg/m3
aluminium sulfate	38 mg/m3	64 mg/m3	380 mg/m3

Ingredient	Original IDLH	Revised IDLH
sodium bicarbonate	Not Available	Not Available
1-bromo-3-chloro- 5,5-dimethylhydantoin	Not Available	Not Available
aluminium sulfate	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
1-bromo-3-chloro- 5,5-dimethylhydantoin	D	> 0.01 to ≤ 0.1 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
 - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 ft/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 ft/min)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 ft/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Chemical goggles
- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing

Chemwatch: 11-32175 Page 7 of 16 Issue Date: 24/03/2023

Version No: 5.1 Print Date: 24/03/2023

Spa Pro Spa Balance 2

the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- \cdot Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ► DO NOT wear cotton or cotton-backed gloves.
- ► DO NOT wear leather gloves
- Promptly hose all spills off leather shoes or boots or ensure that such footwear is protected with PVC over-shoes.

Body protection

See Other protection below

Overalls.

- PVC Apron.PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

Other protection

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static
- electricity.

 For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Respiratory protection

Type AB-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AB-AUS P2	-	AB-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AB-AUS / Class 1 P2	-
up to 100 x ES	-	AB-2 P2	AB-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

76ab-p()

 $\cdot \ \text{Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.}$

Issue Date: **24/03/2023**Print Date: **24/03/2023**

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.
- \cdot Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	pearance White granules with faint halogen odour; miscible with water.		
Physical state	Divided Solid	Relative density (Water = 1)	0.9
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	160	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable under normal handling conditions. Prolonged exposure to heat. Hazardous polymerisation will not occur. Unstable in the presence of incompatible materials
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Inhaled

Information on toxicological effects

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Chlorine vapour is extremely irritating to the upper respiratory tract and lungs

Symptoms of exposure to chlorine include coughing, choking, breathing difficulty, chest pain, headache, vomiting, pulmonary oedema. Inhalation may cause lung congestion, bronchitis and loss of consciousness. Effects may be delayed. Delayed effects of exposure to chlorine vapour can include shortness of breath, violent headaches, pulmonary oedema and pneumonia.

Earlier reports suggested that concentrations around 5 ppm chlorine caused respiratory complaints, corrosion of the teeth, inflammation of the mucous membranes of the nose and increased susceptibility to tuberculosis in chronically-exposed workers. Recent studies have not confirmed these findings. Concentrations too low to effect the lower respiratory tract may however irritate the eyes, nose and throat.

Amongst 29 volunteers exposed at 0.5, 1 or 2 ppm chlorine for 4 to 8 hours the following responses were recorded: itching or burning of the nose, itching or burning of the throat, production of tears, urge to cough, runny nose, nausea, headache, general discomfort, dizziness, drowsiness and shortness of breath

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema.

Chemwatch: 11-32175 Page 9 of 16
Version No: 5.1

Spa Pro Spa Balance 2

Issue Date: **24/03/2023**Print Date: **24/03/2023**

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.

Skin Contact

The material can produce chemical burns following direct contact with the skin. Open cuts, abraded or irritated skin should not be exposed to this material

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of

scar issue.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatlcs appear to be at

Chronic

particular risk for pulmonary effects.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

Chronic poisoning from ionic bromides has historically resulted from medical use of bromides but not from exposure in the environment or workplace. In the absence of other signs of poisoning, there may be depression, hallucinations and schizophrenia-like psychosis. Bromides may also cause sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness, inability to speak, difficulty speaking, weakness, fatigue, a spinning sensation, stupor, coma, decreased appetite, nausea, vomiting, an acne-like rash on the face (bronchoderma), legs and trunk, swelling of the bronchi and a profuse discharge from the nostrils. There may also be inco-ordination and very brisk reflexes. Correlation of nervous system symptoms with blood levels of bromide is inexact. Current day usage of bromides is generally limited to antihistamines such as brompheniramine, which is a covalent compound; ionic compounds are no longer regularly used due to their toxicity. In test animals, brominated vegetable oils (BVOs), historically used as emulsifiers in certain soda-based soft drinks, produced damage to the heart and kidneys in addition to increasing fat deposits in these organs. In extreme cases, BVOs caused testicular damage, stunted growth and produced lethargy and fatigue.

Brominism (chronic bromine poisoning) produces slurred speech, apathy, headache, decreased memory, anorexia and drowsiness, psychosis resembling paranoid schizophrenia, and personality changes.

Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Reproductive effects caused by bromide (which crosses the placenta) include central nervous system depression, brominism, and bronchoderma (an acne-like rash) in the newborn.

Reduced respiratory capacity may result from chronic low level exposure to chlorine gas. Chronic poisoning may result in coughing, severe chest pains, sore throat and haemoptysis (bloody sputum). Moderate to severe exposures over 3 years produced decreased lung capacity in a number of workers.

Delayed effects can include shortness of breath, violent headaches, pulmonary oedema and pneumonia.

Amongst chloralkali workers exposed to mean concentrations of 0.15 ppm for an average of 10.9 years a generalised pattern of fatigue (exposures of 0.5 ppm and above) and a modest increased incidence of anxiety and dizziness were recorded. Leukocytosis and a lower haematocrit showed some relation to exposure.

Spa Pro Spa Balance 2	TOXICITY Not Available	IRRITATION Not Available
sodium bicarbonate	TOXICITY Oral (Mouse) LD50; 3360 mg/kg ^[2]	IRRITATION Eye (rabbit): 100 mg rinse - mild

Chemwatch: 11-32175 Page 10 of 16

Issue Date: 24/03/2023 Version No: 5.1 Print Date: 24/03/2023 Spa Pro Spa Balance 2

	TOXICITY	IRRITATION	
1-bromo-3-chloro- 5,5-dimethylhydantoin	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Primary Skin Irritation Index 6.1 [Manufacturer]	
5,5 difficulty my deficem	Oral (Rat) LD50: 1390 mg/kg ^[2]	Skin (rabbit): SEVERE **	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1167.5 mg/kg ^[1]	Eye (rabbit): 10 mg/24h SEVERE	
aluminium sulfate	Inhalation(Rat) LC50: >5 mg/l4h ^[1]		
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
Legend:	New Part of the Control of the		

SODIUM BICARBONATE

Oral (human-infant) TDLo: 1260 mg/kg Skin (human): 30 mg/3d-I-mild

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Positive sensitiser in guinea pig skin assay ** * [Farm Chem. Handbook] ** Red for Halohydantoins

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. No significant acute toxicological data identified in literature search.

for halohydantoins

Acute toxicity: The halohydantoins were shown to be of low toxicity by the oral and dermal routes of exposure. Acute toxicity by the inhalation route is more significant. The halohydantoins are significant eye and skin irritants . Dermal sensitization has also been observed for some of the halohydantoin com pounds.

1-BROMO-3-CHLORO-5,5-DIMETHYLHYDANTOIN

Non-acute toxicity testing of halohydantoins and their breakdown products dimethylhydantoin and ethylmethylhydantoin (DMH/EMH) (including sub chronic, developmental, reproductive, and chronic toxicity testing) all show the presence of non-specific toxicity only at relatively high doses of the test chemical. The primary reason for developing generic data on DMH and EMH rather than the entire halohydantoin molecule is that these ring structures represent the persistent component of the halohydantoins. A secondary reason for evaluating the halohydantoin moieties is that the corrosive properties of the released halogens would limit the amount of chemical that could be administered to laboratory animals; thereby precluding a meaningful evaluation of the halohydantoin moieties

Developmental and reproductive toxicity data demonstrate no increase in susceptibility to the toxic effects of 5,5-dimethylhydantoin with the exception of one study, where foetal and litter effects (increased incidence of 27th presacral vertebrae) in rabbits were observed at a lower dose level than that which resulted in maternal toxicity (decreased body weight and food consumption during the dosing period) following treatment. The increase of 27th presacral vertebrae is a common variation found in rabbit developmental toxicity studies and was not considered an adverse effect. In a prenatal developmental toxicity study conducted in rabbits with 5-ethyl-5-methylhydantoin, there was no increased susceptibility of the foetuses observed.

Available metabolism data indicate that DMH and EMH are excreted unchanged in the rat. However, it is known that hydroxymethylhydantoins are formaldehyde releasers. The DMH portion of the molecule is assumed to behave the same as the hydantoins from the halohydantoin compounds. Any risk associated from the formaldehyde portion of the hydroxymethylhydantoin molecule must be addressed further. Carcinogenicity: Cancer studies in rats and mice indicated no systemic effects other than decreased body weight and body weight gains in females (rats) and males (mice) and increased hyperplasia of submandibular lymph nodes in males (rats). No evidence of carcinogenicity of the test material was reported. 5,5-dimethylhydantoin is classified as 'not likely to be a carcinogen based upon the negative evidence for

carcinogenicity in both the rat and mouse studies as well as the negative evidence of mutagenicity. Mutagenicity: The data on mutagenicity of dimethylhydantoin shows, in large part, negative responses in the studies conducted. Literature reports indicate a positive effect for 2 in vitro mammalian cytogenetic assays in Chinese Hamster Ovary cells

Oral (rat) TDLo: 10138 mg/kg/8D-C

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures in vitro in that, in vivo, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

For aluminium compounds:

ALUMINIUM SULFATE

Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water

For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from dietary exposure to aluminium

Page 11 of 16 Spa Pro Spa Balance 2

Issue Date: **24/03/2023**Print Date: **24/03/2023**

The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium -containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account Systemic toxicity after repeated exposure

No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of aluminium

When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.

The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent

Reproductive and developmental toxicity:

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity

High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium citrate and nitrate and aluminium hydroxide was much lower than that of aluminium citrate This study was used by JECFA as key study to derive the PTWI.

Genotoxicit

Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels.

Carcinogenicity.

The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons.

Neurodegenerative diseases

Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity:

It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome.

Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent itching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium

Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste

1-BROMO-3-CHLORO-5,5-DIMETHYLHYDANTOIN & ALUMINIUM SULFATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal

Spa Pro Spa Balance 2

Issue Date: 24/03/2023 Print Date: 24/03/2023

lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

- Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Spa Pro Spa Balance 2	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	833.28mg/L	4
sodium bicarbonate	EC50	48h	Crustacea	101mg/l	2
	EC50	96h	Algae or other aquatic plants	650mg/l	4
	NOEC(ECx)	240h	Algae or other aquatic plants	26.8mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
1-bromo-3-chloro-	LC50	96h	Fish	0.26-0.4mg/L	4
5,5-dimethylhydantoin	EC50	48h	Crustacea	0.84-1.04mg/L	4
	EC50(ECx)	96h	Crustacea	0.2mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	>0.42mg/l	2
	EC50	72h	Algae or other aquatic plants	0.0169mg/l	2
-1					
aluminium sulfate	EC50	48h	Crustacea	0.33mg/l	2
aluminium sulfate	EC50 EC10(ECx)	48h 72h	Crustacea Algae or other aquatic plants	0.33mg/l 0.000203mg/l	2

Toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For chlorine:

Environmental fate:

Atmospheric chlorine produced as a result of such process as disinfection forms hydrochloric (HCI) or hypochlorous (HOCI) acid in the atmosphere, either through reactions with hydroxy radicals or other trace species such as hydrocarbons. These acids are believed to removed from the atmosphere primarily through precipitation washout (i.e. wet deposition as chlorine is scrubbed out by rain in the subcloud layer) or dry deposition as gaseous chlorine contacts and reacts with the earths surface.

Water chlorination, resulting from municipal and industrial wastewater treatment and cooling water disinfection, initially introduces chlorine into the water as chlorine gas, hypochlorite ion (OCI-), or its salt. These forms of chlorine are termed free residual chlorines (FRC). Chlorine in aqueous systems volatilises or quickly decays to residual forms such as hypochlorous acid, chloramine and chlorinated organics. Aquatic chemistry is determined by aquatic factors including pH, ammonium ion (which combines with chlorine to produce chloramine) and certain other reducing agents. Inorganic reducing agents in estuarine waters include sulfur, iron and manganese. Other organic compounds in water also contribute to chlorine decay rate. The reactions of chlorine or hypochlorites in water produce a number of by-products many of which have been implicated as genotoxic or tumourigenic. Chlorine, added to drinking water as chlorine gas (CI2) or hypochlorite salts (e.g., NaOCI), effectively inactivates bacteria in 20 minutes at concentrations of 0.03 to 0.06 mg/l at pH range of 7.0 to 8.5 and temperature range of 4 deg.C to 22 deg.C.

Chlorine disinfectants in wastewater react with organic matters, giving rise to organic chlorine compounds such as AOX (halogenated organic compounds absorbable on activated carbon), which are toxic for aquatic organisms and are persistent environmental contaminants.

Chlorine hydrolyses very rapidly in water (rate constants range from 1.5 x 10-4 at deg. C to 4.0 x 10-4 at 25 deg.C; half-life in natural waters, 0.005 seconds. In fresh and wastewaters at pH >6, complete hydrolysis occurs with the formation of hypochlorous acid (HOCI) and chloride ion (CI-). The hypochlorous acid ionizes to hydrogen ion (H+) and hypochlorite ion (OCI-). At pH values >5, OCI- predominates; at pH values <5, HOCI predominates. Free chlorine (CI2, HOCI, and OCI-) reacts rapidly with inorganics such as bromide and more slowly with organic material present in natural waters. These reactions yield chloride, oxidised organics, chloroorganics (including trihalomethanes), oxygen, nitrogen, chlorate, bromate and bromoorganics.

Chlorines ultimate aqueous fate is chloride.

Vapourisation of molecular chlorine (CI2) from water to the atmosphere may be significant at low pH values and high concentrations (e.g., pH 2 and 3500 mg/l chlorine), but is insignificant at neutral pH and low concentrations

Vegetation acts as an important sink for chlorine air pollution. Plant exposure to elevated levels of chlorine can cause plant injury; however chlorine tends to be rapidly converted to

Atmospheric: When chlorine, hypochlorous acid or hydrogen chloride mixes in the atmosphere with water vapour, dilute solutions of strong mineral acids are formed that fall to earth as acid rain, snow, and fog, or acidified dry particles

Chlorine may react with soil components to form chlorides; depending on their water solubility, these chlorides are easily washed out from the soil.

Bioaccumulation/ bioconcentration: There is no potential for the bioaccumulation or bioconcentration of chlorine.

Chemwatch: 11-32175 Page 13 of 16

Version No: 5.1

Spa Pro Spa Balance 2

Ecotoxicity:

Fish LC50 (96 h): 0.015-13.5 mg/l

Chlorine has high acute toxicity to aquatic organisms; many toxicity values are less than or equal to 1 mg/l. Twenty-four-hour LC50 values range from 0.076 to 0.16 mg/l for Daphnia magna (water flea) and from 0.005 to 0.1 m/l for Daphnia pulex (cladocern); 48-hour LC50 values range from 5.3 to 12.8 m/l for Nitocra spinipes (snail); and 96-hour LC50 values range from 0.13 to 0.29 mg/L for Oncorhynchus mykiss (rainbow trout), from 0.1 to 0.18 mg/l for Salvelinus fontinalis (brook trout), and from 0.71-0.82 mg/l for Lepomis cyanellus (green sunfish)

Papillomas of the oral cavity in fish have been associated with exposure to chlorinated water supplies.

Chlorine is phytotoxic but is also essential to plant growth; crops need around 2 kg or more of chlorine per acre. Acute toxicity to plants is characterized by defoliation with no leaf symptoms and, in higher plant forms, by spotting of the leaves (at 1.5 mg/m3) and marginal and interveinal injury (at 150-300 mg/m3)

Data from experimental studies indicate that injury to animals occurs only in the presence of high concentrations of chlorine, either in drinking water or the ambient atmosphere. http://www.epa.gov/chemfact/s_chlori.txt

U.S. ENVIRONMENTAL PROTECTION AGENCY August 1994

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
sodium bicarbonate	LOW	LOW
1-bromo-3-chloro- 5,5-dimethylhydantoin	нідн	HIGH
aluminium sulfate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
sodium bicarbonate	LOW (LogKOW = -0.4605)
1-bromo-3-chloro- 5,5-dimethylhydantoin	LOW (LogKOW = -0.9441)
aluminium sulfate	LOW (LogKOW = -2.2002)

Mobility in soil

Ingredient	Mobility
sodium bicarbonate	HIGH (KOC = 1)
1-bromo-3-chloro- 5,5-dimethylhydantoin	LOW (KOC = 23.14)
aluminium sulfate	LOW (KOC = 6.124)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Recycle wherever possible.

- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Forest and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation with soda-lime or soda-ash followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

For small quantities of oxidising agent:

- Cautiously acidify a 3% solution to pH 2 with sulfuric acid.
- Gradually add a 50% excess of sodium bisulfite solution with stirring.
- Add a further 10% sodium bisulfite.
- ▶ If no further reaction occurs (as indicated by a rise in temperature) cautiously add more acid.

SECTION 14 Transport information

Labels Required

Issue Date: 24/03/2023

Print Date: 24/03/2023

Issue Date: **24/03/2023**Print Date: **24/03/2023**

NO

Marine Pollutant
HAZCHEM

Land transport (ADG)

Land transport (ADG)	
UN number or ID number	3085
UN proper shipping name	OXIDISING SOLID, CORROSIVE, N.O.S. (contains 1-bromo-3-chloro-5,5-dimethylhydantoin)
Transport hazard class(es)	Class 5.1 Subsidiary risk 8
Packing group	
Environmental hazard	Not Applicable
Special precautions for user	Special provisions 274 Limited quantity 1 kg

Air transport (ICAO-IATA / DGR)

UN number	3085			
UN proper shipping name	Oxidizing solid, corrosive	e, n.o.s. * (contains 1-bromo-3-chloro-5,	5-dimethylhydantoi	٦)
	ICAO/IATA Class	5.1		
Transport hazard class(es)	ICAO / IATA Subrisk	8		
	ERG Code	5C		
Packing group	II			
Environmental hazard	Not Applicable			
	Special provisions		A3 A803	
	Cargo Only Packing Ir	structions	562	
	Cargo Only Maximum	Qty / Pack	25 kg	
Special precautions for user	Passenger and Cargo	Packing Instructions	558	
•			F 1	
	Passenger and Cargo	Maximum Qty / Pack	5 kg	
		Maximum Qty / Pack Limited Quantity Packing Instructions	5 kg Y544	

Sea transport (IMDG-Code / GGVSee)

UN number	3085
UN proper shipping name	OXIDIZING SOLID, CORROSIVE, N.O.S. (contains 1-bromo-3-chloro-5,5-dimethylhydantoin)
Transport hazard class(es)	IMDG Class 5.1 IMDG Subrisk 8
Packing group	
Environmental hazard	Not Applicable
Special precautions for user	EMS Number F-A, S-Q Special provisions 274 Limited Quantities 1 kg

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
sodium bicarbonate	Not Available
1-bromo-3-chloro- 5,5-dimethylhydantoin	Not Available
aluminium sulfate	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type

Page 15 of 16

Spa Pro Spa Balance 2

Issue Date: **24/03/2023**Print Date: **24/03/2023**

Product name	Ship Type
sodium bicarbonate	Not Available
1-bromo-3-chloro- 5,5-dimethylhydantoin	Not Available
aluminium sulfate	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

sodium bicarbonate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

1-bromo-3-chloro-5,5-dimethylhydantoin is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

aluminium sulfate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (sodium bicarbonate; 1-bromo-3-chloro-5,5-dimethylhydantoin; aluminium sulfate)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	24/03/2023
Initial Date	01/06/2018

SDS Version Summary

Version	Date of Update	Sections Updated
4.1	23/12/2022	Classification review due to GHS Revision change.
5.1	24/03/2023	Hazards identification - Classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

Chemwatch: 11-32175 Page **16** of **16** Issue Date: 24/03/2023 Version No: 5.1 Print Date: 24/03/2023

Spa Pro Spa Balance 2

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.